Bicyclic Cyclononadienes from 1,7-Cycloaddition of Tetracyanoethylene to Divinylcyclopropane Systems

By Shalom Sarel and Marcel Langbeheim
(Department of Pharmaceutical Chemistry, The Hebrew University School of Pharmacy, Jerusalem, Israel)

Summary A novel $\left[\left(2_{\pi}+2_{\sigma}+2_{\pi}\right)+2_{\pi}\right]$ cycloaddition involving a divinylcyclopropane system and TCNE to form a nine-membered ring is described.

OUR studies ${ }^{1}$ of the 1,5 -cycloaddition of tetracyanoethylene (TCNE) across the vinylcyclopropane system in 4-methyl-ene-spiro[2.x]alkanes (1) to yield the corresponding cyclo-

heptenes (3) indicated that the reaction is a two-stage process, giving at first the $[2+2]$ cycloadduct (2) which on subsequent heating undergoes an internal $[3+4]$ cycloaddition to form (3).

We report the first example of ring expansion sequences in which the divinylcyclopropane unit of the 4 -methylene-1-vinyl-spiro[2.x]alkanes (6) reacts with TCNE to yield (88%) the bicyclic system (7) containing a cyclononadiene unit. The hitherto unknown diketone (5) was obtained (62%) from the α-chloroalkanone (4) following the method of Fraisse-Julien ${ }^{2}$ and then converted into the spiro[2.6]nonane (6), b.p. $32-34{ }^{\circ} \mathrm{C}$ at 0.04 mmHg , \dagger by a modified Wittig reaction. ${ }^{1}$

The reaction between a solution of TCNE in acetonitrile and an equimolar quantity of (6) under N_{2} at room temp. was fast and exothermic, affording a $1: 1$-adduct (88%), m.p. $150-153{ }^{\circ} \mathrm{C}$ (from $\mathrm{C}_{6} \mathrm{H}_{12}$). It was assigned structure (7) on the basis of elemental analyses, its mass spectrum ($M^{+}, m / e 304$), its i.r. spectrum (NaCl) : $2185(\mathrm{C} \equiv \mathrm{N}$), 1640, and $1610 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$, and its n.m.r. spectrum $\left(\mathrm{CDCl}_{3}\right)$:

(7)

$$
n=1,2 \text {, or } 3
$$

$\tau 2.21(1 \mathrm{H}$, vinyl), $7.35(2 \mathrm{H}, \mathrm{AB}, J 2 \mathrm{~Hz})$, and $8.80(3 \mathrm{H}, \mathrm{s}$, Me), complete absence of cyclopropane proton signals, and appearance instead of a new $A B$ resonance $(2 \mathrm{H})$ typical for allylic methylene protons and a new (1 H) vinylic proton absorption.

The reaction was general for substrates with $n=1,2$, or 3, giving rise to products exhibiting similar structural features.
(Received, 30th May 1977; Com. 526.)

$$
7 \cdot 78-7 \cdot 42(\mathrm{~m}, 3-\mathrm{H}) \text {, and } 5 \cdot 36 \text { and } 5 \cdot 14 \text { (finely split s, ratio } 2: 1 \text {, vinylic } \mathrm{H}) ; m / e 176\left(\mathrm{C}_{19} \mathrm{H}_{20}\right) \text {. }
$$

${ }^{1}$ S. Sarel, A. Felzenstein and J. Yovell, J.C.S. Chem. Comm., 1973, 859; 1974, 753.
${ }^{2}$ E. Bonavent, M. Causse, M. Guitard, and R. Fraisse-Julien, Bull. Soc. chim. France, 1963, 2462.

